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Abstract. We describe a two-dimensional (2D) and a three-dimensional (3D) percolation model for ionic
conductor-insulator composites such as copper(I) bromide-titanium dioxide (CuBr-TiO2) or lithium iodide-
alumina (LiI-Al2O3). These composites present an enhanced conductivity closely related to the insulator
concentration. This effect is explained by the formation of highly conducting space charge regions near the
phase boundaries which are represented by good conductor bonds. Our numerical model takes into account
grain size and correlation effects. The dimension has a leading role for the conduction properties. In the 2D
case, the good conductor bonds do not percolate, whatever the insulator concentration, and the maximum
conductivity of the composite samples is of the same order as that of the ionic conductor grains. The
behavior of the system is very different in the 3D case where, for a large domain of composition, the good
conductors percolate through the regions between the conductor grains. For the CuBr-TiO2 composites
the conductivity versus composition curve is bell-shaped. Conversely, in the LiI-Al2O3 system, a linear
relation between the conductivity and the insulator volume fraction is obtained in the experiments. Our
model gives a plausible interpretation of the conductivity in both systems.

PACS. 66.10.Ed Ionic conduction – 66.30.Dn Theory of diffusion and ionic conduction in solids

1 Introduction

A number of applications of solid ionic conductors have
been developed recently, including high performance bat-
teries and fuel cells, chemical sensors, electrochromic dis-
plays [1].

In comparison with conventional liquid electrolytes,
solid electrolytes offer several advantages such as the ab-
sence of leakages and long storage lives. Furthermore,
miniaturisation is possible because solids can be shaped
to thin films or nano-structured materials [2]. The main
limitation to their use is the low conductivity of most
solid ionic conductors at room temperature. A strategy
to enhance the conductivity is to prepare a composite
by mixing the conductor with another material. This en-
hancement effect, first observed for LiI-Al2O3 [3], has been
found subsequently in several other systems [4]. The in-
terfaces play a major role in the conductivity enhance-
ment, especially at moderate temperature. Experimen-
tally, for non-metallic composites, the conductivity can
be enhanced by a factor near 50.

In practice, it is of primary interest to optimize the
enhancement effects by choosing the appropriate composi-
tion for the samples. To guide this choice, the dependence
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of the conductivity on the composition should be sys-
tematically studied. To our knowledge, the original work
of Liang remains the most complete experimental study
of the conductivity over an extended range of composi-
tion [3]. However it is probable that these experiments
have been biased by presence of water (molecules adsorbed
on alumina surfaces) because LiI is very hygroscopic [5].
In the following we will give a plausible interpretation of
the linear variation of the conductivity with the insulator
proportion obtained by Liang [3].

To avoid the experimental problems related to water
absorption, we have chosen to work on another type of
composite, CuBr-TiO2, in which majority charge carriers
are Cu+ ions.

We now describe the experimental procedure shortly
because we essentially focus in this work on the numer-
ical results given by 2D and 3D models. The titanium
dioxide particles have a well defined purity and grain size.
The size of the CuBr grains is distributed around an av-
erage value of 5 µm but we have also done experiments
with smaller granulometry [6]. The intergranular regions
have an average thickness of about 0.4 µm. Impedance
spectroscopy measurements were performed at frequencies
ranging from 10−1 Hz to 105 Hz, between ambient tem-
perature and 625 K. The measuring device and method
of operation were described previously in detail [7]. The
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Fig. 1. Bell-shaped curves of the reduced electrical conduc-
tivity of composites versus volume fraction of titanium dioxide
at 400 K. Experimental data differ by the grain size of ionic
conductor: dark circles for 5 µm and empty circles for 3 µm.
Numerical results are represented by the solid (dashed) line for
L = 25 (L = 15).

conductivity is determined in a Nyquist plot from the in-
tersection of the bulk impedance curve with the real axis.
Figure 1 shows the variation of the conductivity at 400 K,
as a function of the TiO2 volume fraction, φ. The experi-
mental data are normalized by the conductivity measured
for pure polycrystalline CuBr, 3 × 10−4 (Ωm)−1 [8]. For
this bell-shaped curve, a distinct increase of conductiv-
ity is observed for φ higher than about 0.05, with a broad
maximum, Σmax ' 10, around φ = 0.15. The conductivity
drops sharply when φ is higher than 0.2.

The increase of conductivity can be explained [9] by
the formation of space charge regions near the grain inter-
faces; at equilibrium, there exists a concentration profile
of mobile charge carriers. Maier proposed a model predict-
ing a linear variation of the conductivity with the compo-
sition for intermediate insulator concentrations. However,
one must be cautious not to extend these predictions out
of their validity domain.

For composites with an insulating oxide, the conduc-
tivity should reach a maximum and then decrease, as
larger and larger amounts of the insulating material are
added. Bunde et al. [10] have introduced a percolation
model which gives a bell-shaped curve for the conductiv-
ity. In their model, insulating and conducting grains of
equal size are randomly distributed on a lattice and en-
hanced conductivity is imposed at the interfaces between
the two phases. However, in the experiments, the insulator
grains are usually much smaller than the conductor grains
and tend to form a layer around the latter because of the
chemical affinity between both phases. These size effects
and phase interactions should thus necessarily be included

Fig. 2. Schema of the 2D random binary network, with L = 7
and Nc = 1. The white squares are conductor, the grey ones are
insulator. A standard full line corresponds to a conductor bond,
a bold dark line to a good conductor bond and a bold white line
to an insulating bond. The dashed line limits the conductor
cluster of size L − 2 and the exterior crown represents the
space charge region, filled either with insulator (probability p)
or with conductor (probability (1−p)). An intensity is injected
at the top electrode, at potential V0. The bottom electrode is
grounded.

in a generic model for the ionic conductor-insulator com-
posites.

The aim of this work is to compare the numerical re-
sults obtained with 2D and 3D samples. It will be shown
that the dimensionality has a drastic effect on the con-
duction properties of the sample and, more precisely, that
the 2D models are not relevant for the experiments. In
particular, the good conductor bonds do not percolate in
the 2D case whereas percolation does occur through the
thin inter-grain volume in 3D.

2 The two-dimensional model

We have introduced a generic model for the dispersed ionic
composites [11] defined on a simple square lattice with unit
cell length a. The lattice is divided into large square cells
of lateral size La. The core of one cell, i.e., the central
part of size (L − 2)a represents the bulk of a conducting
grain and the external layer of thickness a belongs to the
intergranular region (see Fig. 2). The (L−2)2 unit squares
of size a in the inner shell are filled with conductor. The
outer shell containsNb = L2−(L−2)2 unit cubes and each
of them is occupied either by a conductor with probabil-
ity p = (L2/Nb)φ = (L2/4 (L− 1))φ , or by an insulator
with probability 1 − p. Here φ is the volume fraction of
conductor in the sample.

In 2D, each node α is the common corner of 4 squares
and each bond is shared by 2 adjacent squares. Then three
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types of bonds are defined, according to the nature of the
squares. When the two adjacent squares are conductors,
the central bond is set to normal conductor with a conduc-
tance Gn. Conversely, when the two squares are insulators,
the central bond is set to insulator with a conductance Gi.
If one square is conductor and the adjacent one insulator,
then the bond between them is set to good conductor with
a conductance Gg, where Gg � Gn accounts for the en-
hanced conduction in the interfacial region.

A sample contains Nc×Nc cells and thus (NcL)2 unit
squares. In order to limit the finite size effects, periodic
boundary conditions are implemented in the transversal
direction, the longitudinal direction being that of the in-
jected current, i.e. the direction perpendicular to the two
electrodes. It is worth noting that, in the limit L→ 1, the
model introduced by Bunde et al. [10] is recovered. How-
ever, confinement of good conductor paths in narrow re-
gions is not included in their limit, whereas it plays a fun-
damental role in the experiments as well as in our model
when L > 1.

To compute the conductivity of a sample, we have to
solve the system of Kirchhoff equations,

Iα =
∑
β

Gαβ(Vα − Vβ) (1)

where Iα is the current flowing through the node α. The
sum runs over the four nodes which are first neighbors of
node α. The conductance of the bond between nodes α
and β is denoted Gαβ and Vα is the potential at node α.
Two linear electrodes are placed at the top and the bot-
tom of the sample. The top electrode is represented by
a linear array of bonds of conductance Gn. The node in-
tensities must be provided as the initial conditions. We
set the total source current to unity, so that an intensity
(NcL)−1 flows through each node of the top electrode. The
total current is collected by the bottom electrode which
is grounded (V = 0). In order to calculate the potentials,
we invert the conductance matrix, using a sparse matrix
resolution method [12]. The overall conductivity, Σ, is the
conductance normalized to one bond. It is given by a sum
over the first-neighbor pairs of nodes. The 2D conductivity
and the conductance are measured by the same number,

Σ−1 =
∑
〈α,β〉

Gαβ(Vα − Vβ)2. (2)

We first studied the percolation of the g-bonds (bonds
of good conductance Gg) through a square lattice with
L = 25 and Nc varying from 1 to 3. We observed that
the percolation threshold φc was not reachable but, due
to the finite size of the system, the g-bond percolation
probability is not exactly zero for φ close enough to φc.
For a given φ, this probability decreases when the sample
size increases. So one can expect the sample conductance
to be of the order of Gn.

Figure 3 gives the conductivity Σ(φ) versus the com-
position φ for three sizes (L = 25 and Nc = 1, 2, 3) and for
different Gg/Gn ratios. We trivially recover Σ(0) = 1, and
Σ(1) = 0. Σ reaches a maximum Σmax for a given com-

Fig. 3. The conductivity as a function of the volume fraction
of insulator in the 2D case with the parameter h = Gg/Gn for
L = 25 and, respectively, Nc =1, 2, 3. h = 1000 (�), h = 500
(�), h = 400 (◦), h = 300 (H), h = 200 (N), h = 100 (�),
h = 50 (•), h = 20 (�) and h = 10(+).

position φmax, which depends both on L and Nc. Some
remarks ought to be done. First, it is necessary to use
noticeable (' 100) values of the ratio Gg/Gn in order to
obtain a sharp maximum.

Second, we observe in Figure 1 that the conductivity
decreases and φmax moves towards lower values, when Nc



424 The European Physical Journal B

increases. This is very clear from the curves for Nc = 1
and Nc = 2.

Let us denote p′ the probability to have a g-bond in the
intergranular region. For L = 25, a percolation test shows
that the g-bonds never percolate through the larger sam-
ples: it is clear that the inter grain regions are nearly 1D
so the threshold p′c is very high. The maxima of the curves
correspond to ∆p′N−1/ν = const., where ∆p′ = | p′− p′c |.
It is easy to show that the abscissae φmax of the maxima
decrease when N increases.

In the framework of an Effective Medium Approxima-
tion (EMA), an exact probability calculation gives for the
g-bond percolation probability in a single cell (Nc = 1):

PEMA(p, L) = [p (2− p)]L−2 {
p2
(
1− p2

)
+2p(1− p) + (1− p)2

[
1− (1− p)L−2

]}2
. (3)

In the outer shell, the unit squares are either insulator
(probability 1− p) or conductor (p).

In order to obtain g-bond percolation it is easy to see
that the N − 2 intermediate pairs of unit squares must
contain one or two conductor bonds, and the probability
associated to this condition is [p(2 − p)](L−2). Then we
multiply this probability by the two identical factors as-
sociated with the two pairs of squares in contact with the
electrodes.

Three cases must be taken into account for each pair
(top or bottom):

i) Two insulator squares: at least one square must be
out of the L− 2 squares of the line must be an insulator.
The probability is then (1 − p)2(1− (1− p)L−2).

ii) One conductor and one insulator squares: we are
sure that the g-bond percolation path exists and we have
two possibilities for the localisation of the conductor (in-
sulator) square. The probability of this mechanism is:
2p(1− p).

iii) The two squares are conductors. Then, at least
one first neighbor cell of the insulator pair must be oc-
cupied with conductor and the associated probability is:
p2(1− p2).

For different sizes, the p values for which the maximum
of PEMA is obtained correspond closely to the values of
pmax (simply related to φmax) given by the simulations.
Figure 4 shows the variations of the different bond num-
bers with φ. It is worth noting that the maximum number
of good conductor bonds is reached for a φ value well above
φmax. In fact, as the number of insulating bonds increases
too, some conductor ways are blocked. The value obtained
for φmax results from a compromise between both effects.

3 3D model for composites

3.1 Calculation of the conductivities

The method is the same as in 2D, but with a cubic array
of bonds. Here each bond is the common edge of four
unit cubes on the original lattice. When the four adjacent
cubes are conductors, the central bond is set to normal

Fig. 4. Variation of the bond numbers for the three types of
bonds, in the case of a cube with L = 10. Note that the max-
imum of conductivity (arrow) occurs for a value of noticeably
inferior to those which corresponds to the maximum of good
conductor bonds.

conductor. Conversely, when the four cubes are insulators,
the central bond is set to insulator. In all the other cases,
the central bond is set to good conductor.

A sample contains (NcL)3 unit cubes, or 3(NcL)3

bonds, and periodic boundary conditions are implemented
in the two transversal directions, the longitudinal direction
being that of the injected current.

Here also we have to solve the system of Kirchhoff
equations (1) in order to calculate the conductivity, but
the sum runs over the six nodes which are first neighbors
of a given node. The cubic array represents the f.c.c. lat-
tice of γ-CuBr. Two planar electrodes are placed at the
top and bottom faces of the sample. The top electrode is
represented by a planar array of bonds of conductance Gn

and the intensity (NcL)−2 flows through each node of the
top surface.

The conductivity of the sample, normalized to one
bond, reaches a value of the order Gg, much greater than
in 2D. Moreover the maximum on the Σ(φ) curve can
already be observed for small values of the ratio Gg/Gn

(' 10) and φmax does not vary really with Nc.
Parameters corresponding to our CuBr-TiO2 compos-

ites were used in the simulations. From the average size
of the CuBr grains and the mean thickness of the TiO2

layers, we deduce L = 25. To obtain a rough estimate
for the conductance ratio Gg/Gn, we used a phenomeno-
logical approach comparable to that of reference [9]. Let
us schematically represent a CuBr grain by one cube of
edge ` = 5 µm. Assuming that the four lateral faces are
good conductors (conductivity σg) and the top and bot-
tom faces normal conductors (conductivity σn), the total
conductance of the grain is given by Gtot = 4σg(2λ)+σn`
and the enhancement factor is Σmax ' Gtot/(σn`). 2λ is
the thickness of the good conductor regions, where λ is
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Fig. 5. The probability P of percolative structure for the good
conductor bonds through 3D sample, L = 10, with Nc = 1 (N)
and Nc = 2 (�), versus the insulator proportion Φ.

the Debye length. In order to get Σmax ' 10 as in the
experiments, one thus needs to set Gg/Gn = σg/σn ' 500
within this crude approximation. It is clear that this value
is an upper bound for the actual ratio Gg/Gn and that it
should only be considered as an order of magnitude. In
the following, we will constantly use Gi = 10−4, Gn = 1
and Gg = 500.

In opposition with the 2D case, the spanning proba-
bility of good conductors bonds is equal to 1 in a large
domain of Φ values. Figure 5 represents this probability
for a given size of the unit cube, here L = 10, and two val-
ues of Nc: Nc = 1 and 2. For the larger size, the domain
of Φ values where the spanning probability is equal to 1 is
larger too.

Due to the memory required to implement the matri-
cial method, we limited the calculations to cubic lattices
of size 25a at most. We computed Σ as a function of φ
for cells of size L = 5 (Nc = 1, 2, 3, 4 and 5), L = 10
(Nc = 1 and 2) and L = 25 (Nc = 1). The conductivity
was averaged over 100 independent samples for each value
of φ. The corresponding data are plotted in Figure 6. For
L = 5 and 10, we verified that increasing Nc produced
only minute changes in the Σ(φ) curves. We thus expect
that the results obtained for one cell of size L = 25 are
representative of a much bigger sample.

All the curves are bell-shaped and start from the value
Σ = 1 for φ = 0. As expected, the conductivity of the
sample is seen to drop to a very low value when the
outer shell is completely filled with insulators, that is for
φsat = 1−(1−2/L)3. For an intermediate value, φmax, the
maximum Σmax is reached. We checked that, in the neigh-
borhood of φmax, paths of good conductor bonds percolate
through all the samples.

Comparing the experimental data to the numerical re-
sults for L = 25 (Fig. 1), we see that both values of φmax

are comparable and that both curves have a very similar
aspect. We can thus conclude that the model captures the
main physical ingredients necessary for a valuable descrip-

Fig. 6. The conductivity Σ of numerical samples as a function
of the volume fraction of insulator φ. The results concern cells
of size L = 5 (Nc = 1, 2, 3, 4 and 5), L = 10 (Nc =1 and 2)
and L = 25 (Nc = 1).

tion of the conductor-insulator composites. For a smaller
mean size of the grains, corresponding to L = 15 in the
model, the experimental results verify the hypothesis ex-
pressed from numerical results: the maximum of the con-
ductivity moves towards high insulator volume fractions.
This shift is easily predicted by a simple geometrical rea-
soning. As can be seen from Figure 1, both φmax and Σmax

increase when L decreases. Thus the enhancement factor
should increase significantly, when the size of the ionic
conductor grains is decreased. In order to test these pre-
dictions we performed additional experiments with pow-
ders of different granulometries. This result is of practical
importance, especially for nanostructured materials.

In addition, density measurements show that the ex-
perimental samples contain about five volume percent of
voids. These voids are spread on the conductor surface
and interrupt locally the conduction paths with enhanced
conductivity. We verified that incorporating voids in the
model samples decreased Σmax as expected. For all these
reasons, varying the ratio Gg/Gn to obtain a fully quanti-
tative agreement between the numerical and experimental
results, although quite possible, would be meaningless.

Finally, samples have been generated with several
square sizes with imposed proportions. In fact the simula-
tions have been done with two types of cells, say L1 = L
and L2 = 2L. The cells cannot overlap and there is no
void in the sample. In practice, we first impose the num-
ber N2 of large cell, which are distributed randomly. Then
the sample is filled with N1 small cells.

A lattice 25 × 25 × 25 is considered where N2 =
0, 1, 2, 3, 4, 5, 6, 7, 8 cells of size L2 = 10 are placed ran-
domly . The detailed results are presented in [13].

In every case the conductivity corresponds to the mean
size of the squares filling the lattice. This result is impor-
tant because the grain size of the experimental samples is
not mono-disperse and our simple model, with only one
size for the ionic conductor grains seems to be very coarse.
In fact, in the 2D case, it is the length of the phase bound-
aries (the area in the 3D case) which is the prominent
parameter.
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Fig. 7. Universal curve for the conductivity versus p′, obtained
with L = 3 and four sizes: � Nc = 7, × Nc = 8, • Nc = 9,
◦ Nc = 10.

3.2 Self-similar properties

Let us denote Ng the number of good bonds in a given
sample, the probability to find a g-bond is

p′ = 〈Ng〉/3(NcL)3 (4)

where the brackets 〈Ng〉 represents the mean value of Ng

over the samples. Clearly, it is impossible to impose a value
of Ng which must be calculated for each sample. Then the
results are sorted out in function of Ng, i.e. of p′.

Near the percolation threshold, the conductivity
should obey a scaling law related to the size of the sample
N = L Nc and to the deviation ∆p′ from p′c.

Σ ' σgN
−µ/νF

(
∆p′N1/ν

)
(5)

where µ and ν are the regular critical exponents respec-
tively associated with the conductivity and the correla-
tion length in regular percolation. F is the universality
function which characterizes the critical phenomena. The
simulations have been done with L = 3 and Nc = 1 to 10.
For given N and 4p′, the mean values are obtained from
27×105/Nc samples. We estimate the threshold probabil-
ity to p′c = 0.334±0.001 and the best method to obtain the
critical exponent µ and ν consists in the plot of the univer-
sal curve ΣNµ/ν versus ∆p′N1/ν (see for example [14]).
The best fit is obtained for ν ' 0.88 and µ ' 2.00, as rep-
resented in Figure 7. These values compare very well with
the exponents obtained from 3D pure disordered samples,
with two species only. This result is not surprising be-
cause, with L = 3, the samples generated are close to the
disordered case.

Fig. 8. Normalized electrical conductivity Σ/Σ0 of LiI-Al2O3

composites versus the volume fraction of alumina φ.

4 3D model of a reactive system

Our theory allows us to predict some astonishing prop-
erties of the insulator-conductor mixtures. For instance
that the conductivity of a sample increases when the ionic
conductor grains are more finely divided [11]. Such an
effect was demonstrated in the case of epitaxial hetero-
layers CaF2/BaF2 [15]. It also allows to understand the
particular behavior of some experimental systems. For in-
stance, in the initial experiments on the system LiI-Al2O3,
Liang [3] obtained experimentally a nearly linear variation
of the conductivity with the composition, until a maxi-
mum was reached and the conductivity decreased when
more insulator was added. Maier’s [9] theory is in agree-
ment with this result, but it does not cover the whole
composition domain studied by Liang. In fact, alumina
has a much higher basicity than titania. It carries water
molecules and wets the ionic conductor LiI which is a hy-
groscopic compound. One can assume that smaller grains
are formed when the alumina proportion increases. The
simplest relation between the mean grain size d and the in-
sulator volume fraction φ is: φ = K/d. Figure 8 shows the
results obtained when we assume this simple relation. The
constant factor K was chosen in order to recover Liang’s
experimental value for Σmax. In this model, the maxi-
mum conductivity corresponds to the minimum grain size
of LiI that can be reached corresponding e.g. to the dis-
tance between two crystal defects (dislocations, stacking
faults, ...). The experimental results are in good qualita-
tive agreement with the simulations. This hypothesis can
also explain the significant difference between the results
obtained with CuBr-alumina and CuBr-titania compos-
ites. In the latter case, interfacial interactions are smaller
and an imperfect wetting is observed, so that the mean
grain size of CuBr is approximatively constant whatever
the fraction of titania. In CuBr-alumina the interactions
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are larger so that a variation of grain sizes of CuBr is ob-
served, resulting in a linear variation of conductivity with
alumina proportion [16].

5 Conclusion

The conductivity enhancement observed in certain ionic
conductor-insulator composites can be simulated using
the outlined realistic physical model, based on the exis-
tence of highly conducting regions confined near the phase
boundaries. The different grain sizes of insulator and ionic
conductor and the phase interactions are taken into ac-
count. Bond percolation is only observed in 3D systems,
but never in two dimensions. The critical exponents are
close to the regular case.

The simulations predict a strong enhancement of con-
ductivity with reduction of the ionic conductor parti-
cle size. This is verified for the CuBr-TiO2 system. Fur-
thermore, the case of a variable particle size, resulting
from strong interactions with the second phase, is also at
least qualitatively simulated, exemplified by the system
LiI-Al2O3. The model can be used as a guide for exper-
imentation and to predict the electrical conductivity of
this type of composite materials.
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